Circuito serie - paralelo - mixto

Circuito elemental






Circuito serie





Circuito paralelo





Circuito mixto 





Magnitudes eléctricas - Ley de Ohm


Magnitudes fundamentales

Las magnitudes fundamentales de la corriente eléctrica son tres, Tensión o voltaje, Intensidad de corriente y Resistencia eléctrica.
  • Tensión (V)
     
    Tensión, voltaje o diferencia de potencial entre dos puntos es la diferencia de energía eléctrica que existe entre dos puntos (entre los bornes de una batería, entre los polos de una pila, o los terminales de un enchufe).

    Se mide en Voltios (V).
      
  • Intensidad (I)
      
    Es el flujo de carga eléctrica por unidad de tiempo que recorre un material. Se debe al movimiento de los electrones en el interior del conductor. En el Sistema Internacional de Unidades se expresa en culombios por segundo (C/s), unidad que se denomina amperio.

    Se mide en Amperios (A).
      
  • Resistencia (R)
      
    Es la oposición que ejerce un material al paso de la corriente eléctrica.

    Se mide en Ohmios (­­Ω)


Ley de Ohm

La Ley de Ohm relaciona mediante una expresión matemática las tres magnitudes fundamentales. La intensidad que atraviesa un elemento es directamente proporcional a su voltaje e inversamente proporcional a su resistencia. A mayor voltaje, mayor intensidad y a mayor resistencia, menor intensidad.
   

 

De esta forma, conociendo dos de ellas, podemos despejar y calcular la tercera, de forma que:

I = V / R          V = I · R          R = V / I




Otras magnitudes eléctricas

  • Energía eléctrica: La energía que consume un receptor eléctrico (motor, calentador) en un determinado periodo de tiempo viene determinado por el voltaje de alimentación, la intensidad que circula y el tiempo de funcionamiento. La energía consumida se mide en el Sistema Internacional (SI) en Julios (J), aunque paara la factura de la electricidad consumida en los hogares y empresas se utiliza en kilovatio hora (kWh).
      
E = V · I · t


  • Potencia eléctrica: El término de potencia es un concepto instantáneo, es decir, la potencia es la energía por unidad de tiempo que produce o consume un elemento eléctrico (Emisor o Receptor). Es una característica muy importante de los aparatos eléctricos (bombillas, calentadores,...). Se mide en Vatios (W).
P = E / t = V · I = R · I 2


Corriente continua - corriente alterna

La mayoría de los dispositivos y aparatos que utilizamos necesitan corriente eléctrica para funcionar. Sin embargo esta corriente eléctrica puede ser de dos tipos, corriente continua o corriente alterna.

Corriente continua

La Corriente Continua (CC) es la corriente eléctrica que se genera en las baterías y las pilas de los dispositivos eléctricos portátiles, móviles, coches, linternas, portátiles, reproductores de música,...

La corriente continua se caracteriza porque los electrones van siempre en el mismo sentido dentro del circuito (como en un circuito de velocidad).

La Intensidad y la Tensión son constantes, es decir, su valor siempre es el mismo. Normalmente los valores de Tensión son de varios voltios (1.5, 3, 4.5, 9, 12 V,...) y la Intensidad de miliamperios (mA).


Corriente continua
Fuente: www.portaleso.com

Corriente alterna

La electricidad que nos lleva a casa es Corriente Alterna (CA). La Corriente Alterna se caracteriza porque los electrones no circulan en el mismo sentido sino que cambian de dirección constantemente, es decir, los electrones oscilan constantemente.

En este caso tanto la Tensión como la Intensidad son variables y cambian de sentido muchas veces por segundo.

Esta corriente se genera en los alternadores de las centrales eléctricas.


Corriente alterna
Fuente: www.portaleso.com

Se define Tensión eficaz a la tensión que debería tener la corriente continua para que produjese el mismo efecto energético, es decir, para que una bombilla brillara lo mismo o una resistencia calentase lo mismo. DEl mismo modo se defina la Intensidad eficaz.

La corriente eléctrica de casa tiene una Tensión eficaz de 220 V y una Frecuencia de 50 hercios (Hz), es decir, cambia 50 veces por segundo.

La mayoría de los aparatos que utilizamos (lámparas, calentadores,...) funcionan con corriente alterna. Esto es debido a que la corriente alterna es más ventajosa que la continua, debido a:
  • Es mas fácil generar corriente alterna que continua, ya que los alternadores (CA) son más simples y eficaces las dinamos (CC).
  • El transporte de corriente alterna es más eficaz (menos pérdidas) porque aumentamos el voltaje (transformadores) y disminuimos la intensidad para minimizar las pérdidas.
  • La corriente alterna (CA) se puede transformar fácilmente en corriente continua (CC). De hecho las baterías de los dispositivos portátiles se cargan conectándolos mediante un transformador a la corriente alterna.


Código binario

El código binario es el sistema de representación de textos, o procesadores de instrucciones de un ordenador utilizando el sistema binario, un sistema numérico de dos dígitos, o bit: el "0" (cerrado o falso) y el "1" (abierto o verdadero).

El sistema binario es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero (0) y uno (1). Es el sistema que se utiliza en los ordenadores y dispositivos electrónicos, ya que éstos trabajan internamente con dos niveles de voltaje (1 - ON, 0 - OFF).

Evidentemente existe una relación biunívoca entre el sistema decimal y el sistema binario, de forma que un número en decimal se puede pasar a binario y viceversa.

Contamos en decimal: 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10...
Contamos en binario: 0 - 1 - 10 - 11 - 100 - 101 - 110 - 111 - 1000 - 1001 - 1010...

Si mostramos la cuenta en una tabla:

0
00000000
16
00010000
1
00000001
17
00010001
2
00000010
18
00010010
3
00000011
19
00010011
4
00000100
20
00010100
5
00000101
21
00010101
6
00000110
22
00010110
7
00000111
23
00010111
8
00001000
24
00011000
9
00001001
25
00011001
10
00001010
26
00011010
11
00001011
27
00011011
12
00001100
28
00011100
13
00001101
29
00011101
14
00001110
30
00011110
15
00001111
31
00011111

Nos damos cuenta de que la serie en binario se reinicia en:

1 → 10 ; 11 → 100 ; 111 → 1000 ; 1111 → 10000 ; 11111 → 100000...

Y que la primera columna (desde la derecha) cambia cada 1 número, la segunda cada 2, la tercera cada 4, la cuarta cada 8, la quinta cada 16, la sexta cambiará cada 32,...

Estos números  1 - 10 - 100 - 1000 - 10000..., corresponden en decimal a 1 - 2 - 4 - 8 - 16 - 32 - 64 - 124 - 256 - 512 - 1024...

Es decir, potencias en base 2 (sistema binario).

Luego si en decimal las posición de las unidades vale 1, las decenas 10, las centenas 100,...

En binario la unidad vale 1, pero la segunda posición, contando desde la derecha, vale 2, la tercera 4, la cuarta 8, la quinta 16, la sexta 32, la séptima  64, la octava 128,...

Nota: El sistema decimal se basa en potencias de base 10 y el binario en base 2

  • Pasar de binario a decimal:

    Para pasar de binario a decimal, debemos tener en cuenta el valor de la posición que ocupa cada número, según lo visto anteriormente, luego:
    1. Iniciamos por la derecha del número en binario, multiplicando cada cifra por el valor de su posición (1ª = 1, 2ª=2, 3ª=4, 4ª=8, 5ª=16, 6ª=32, 7ª=64, 8ª=128,...).
    2. Después de realizar cada una de las multiplicaciones, las sumamos, obteniendo de esta forma el equivalente en decimal.

      Nota: observamos que directamente tenemos que sumar el valor de las posiciones de los 1, ya que la multiplicación por cero es cero.
 Ejemplo:     http://upload.wikimedia.org/math/c/a/7/ca77a2919b080af4ba1035cea018d58e.png


  • Pasar de decimal a binario: 
    • Método de la división entre 2: Se divide el número del sistema decimal entre 2, cuyo resultado entero se vuelve a dividir entre 2, y así sucesivamente hasta que el dividendo sea 1. A continuación se ordenan los restos empezando desde el último al primero y obtendremos el número binario que buscamos.
 Ejemplo: Transformar el nº decimal 100 en binario

File:Conversion.JPG

    • Método de la distribución: consiste en distribuir los unos necesarios entre las potencias sucesivas de 2 de modo que su suma resulte ser el número decimal a convertir. Este método se ve muy claro con un ejemplo.
Ejemplo:  Transforma el nº decimal 60 en binario

128 - 64 - 32 - 16 - 8 - 4 -  2 - 1

No podemos poner un 1 en las bases que sean mayores de 60, ya que nos pasaríamos.
Luego colocamos un 1 en el 32 → Nos quedan 60 - 32 = 28
Ahora colocamos un 1 en el 16 → 28 - 16 = 12
Colocamos un 1 en el 8 → 12 - 8 = 4
Colocamos un 1 en el 4 → 4 - 4 = 0
Luego si nos queda nada más, colocamos 0 en las posiciones "2" y "1"

El número resultante es: 00111100

  • Sumar en binario:Para sumar en binario debemos tener en cuenta las sumas básicas:
    • 0 + 0 = 0
    • 0 + 1 = 1
    • 1 + 0 = 1
    • 1 + 1 = 10, es decir, da 0 y llevamos 1 a la siguiente posición de la izquierda (acarreo). Esto es equivalente en el sistema decimal a sumar 9 + 1, que da 10: cero en la posición que estamos sumando y un 1 de acarreo a la siguiente posición.
    • 1 + 1 + 1 = 11, es decir, da como resultado 1 y llevamos 1 a la siguiente posición de la izquierda.

Ejemplo:
 
 1
      10011000
    + 00010101
    ———————————
      10101101

Fuente: www.wikipedia.org